

# Status of the LHCb Experiment LHC Symposium FNAL, 1-3 May 2003

Tatsuya Nakada
CERN and University of Lausanne

on behalf of the LHCb Collaboration

### Contents

- 1) Introduction
- 2) Detector Reoptimization
- 3) Subsystem Status
- 4) Experimental Area
- 5) Summary

## 1) Introduction

LHCb is a dedicated experiment at LHC to study CP violation and other rare phenomena in B-meson decays.

By measuring CP violation in  $B_d$  and  $B_s$  systems, we will determine:

- phase of the  $B_d$ - $\overline{B}_d$  oscillation with an improved accuracy  $\sigma(\sin 2\beta \text{ LHCb one year}) = \int_0^{2006} \text{Babar+Belle+Tevatron d}t$
- phase of the  $B_s$ - $\overline{B}_s$  oscillation
- phase of the b→s penguin decay
- phase of the b→d penguin decay
- phase of the  $b\rightarrow u+W^-$  tree decay  $\longrightarrow$  Determination of the CKM and more...





→ Search for New Physics

Necessary  $B_s \rightarrow J/\psi \ \phi, \ J/\psi \ \eta, \ D_s \ K, \ K^+K^-, \ \phi \ \phi, \ \phi \ \gamma, \ \phi \ K_S, \ \phi \ K^{*0}, \dots$  final states  $B_d \rightarrow D^* \ \pi, \ K^{\pm} \ \pi^{\mp}, \ \pi^+ \ \pi^-, \ K^{*0} \ \gamma, \ \phi \ K_S, \ \phi \ K^{*0}, \ K^{*0} \ \overline{K}^{*0}, \dots$ 

LHC Both B<sub>d</sub> and B<sub>s</sub>

LHCb Hadron PID, trigger sensitive to hadronic states, excellent  $\sigma_t$ 

#### Experiment approved in 1998

#### Approved Technical Design Reports:

Magnet, Calorimeter System, RICH System, Muon System, Vertex Locator, Outer Tracker, Online System, Inner Tracker

#### Under construction:

Magnet, Electromagnetic Calorimeter, Hadron Calorimeter

#### Starting construction soon:

RICH-2, VELO, OT, Scintillator Pad Detector and Preshower (Calo. System), Muon System

#### TDR's still to come:

Trigger, LHCb reoptimization (2003) Computing (2005)

Optimal L for LHCb ~  $2 \times 10^{32}$  cm<sup>-2</sup>s<sup>-1</sup>: physics can be exploited from day one and  $\beta^*$  can be tuned to run also at nominal L.

## 2) LHCb reoptimization

Material reduction:

- -Cut the tracking stations by 1/2: e.g. no stations inside of the magnet
- -Improved RICH-1 design: e.g. mirror and mirror support
- -Improved VELO design: number of Si sensors and their thickness



#### New tracking configuration does not deteriorate the performance

For tracks which start from VELO and go through T1-T3



Track reconstruction efficiency 95% for p>5 GeV/c Ghost rate 7% for  $p_T > 0.5$  GeV/c

#### Particle ID performance is still good

#### $K/\pi$ separation



#### Final state reconstruction performance is maintained

#### $B_s \rightarrow D_s \pi$ : mass and decay time resolutions



#### Additional change to improve the trigger

Level-0: unchanged

"high"  $p_{\rm T}$   $\mu$ , e, h,  $\gamma$ ,  $\pi^0$  + pile-up veto (Calo, Muon, Pile-up)  $40{\rm MHz} \rightarrow 1{\rm MHz}$ 

shielding plates were removed to introduce B field between VELO-TT  $\rightarrow p_{T}$  measurement with VELO+TT in Level-1



#### Level-1:

Level-0 information + tracks with high  $p_{\rm T}$  and large impact parameter (Level-0 decision unit + VELO + TT) 1MHz  $\rightarrow$  40 kHz

First look at annual yields (untagged sample)

| $B_d \rightarrow$ | $\pi^+\pi^-$            | 27 k  | $B_s \rightarrow K^+K^-$ | 35 k  |
|-------------------|-------------------------|-------|--------------------------|-------|
|                   | $K^{^{\pm}}\!\pi^{\mp}$ | 115 k | $\mathrm{D_{s}}\pi$      | 72 k  |
|                   | $K^{*0}\gamma$          | 20 κ  | $D_sK$                   | 8 k   |
|                   |                         |       | $J/\psi(\mu\mu)\phi$     | 109 k |
|                   |                         |       | $J/\psi(ee)\phi$         | 19 k  |

→ talks by A. Satta and T. Schietinger

3) Subsystem Status

a) Beam Pipe

10mrad cone: Be or Be-Al alloy

Toffida conc. Be of Be 711 anoy



10mrad cone: stainless steel
Al bellows prototype





2mm Al exit window being made





### b) Magnet



 $\int B \, \mathrm{d}l = 4 \, \mathrm{Tm}$ 

Normal conductor (Al)

Power = 4.2 MW

Fe Yoke = 1600 t

#### All the coils









Magnet support at UX8



#### c) Vertex Locator



200µm n-on-n Si short strips double metal layer for readout with Beetle chip (1/4 µm CMOS)



They have to be placed in secondary vacuum → complex mechanics

## Sensors mounted to a Roman pot system in a vacuum tank Thin foil container Wake field suppressor Exit foil Si detector Module The design has been validated based on the prototype work. Construction will start soon. Al RF foil full scale prototype $300 \mu m (now) \rightarrow 250 \mu m (goal)$



#### d) Silicon Tracker

#### Trigger Tracker and Inner Tracker





Inner Tracker TDR approved for its Si technology in February 2003

Main effort now is the TT design

Laser test set-up

Beetle 1.2 and hybrid





Spring test beam: verify S/N for the long sensor ladder (~30cm) and inter connect cable

### e) Outer Tracker



One station = X-U-V-X module planes



each module is a double layer



Straw drift chambers



 $40\mu m$  Kapton XC-160

+ Laminated Kapton-Al

17

-ø5,2



wire locators and end piece



2.5 m prototype modules



template for the straw assembly large: l > 5 m and high precision  $O(10 \mu)$ 

Production will start soon



Two RICH with three radiators

Aerogel  $\subset$   $C_4F_{10}$   $\subset$   $CF_4$ 

RICH-1 (25-300 mrad)

RICH-2 (15-120 mrad)



RICH-2 engineering design well advanced



RICH-2 construction will start soon.

Removal of the shielding plate for the trigger improvement

→ increased B field

@ RICH-1

Redesign needed to protect photon detectors

→ for the Reoptimization TDR



### g) Calorimeters

#### SPD/PS

#### E-cal production



1 m

Scintillator

-Pb-Scintillator

**Ecal** 

Shashlik

Hcal

Fe-Scintillator tile



E-cal measured in test beam

$$\frac{9.4\%}{\sqrt{E}} \oplus (0.83 \pm 0.02)\% \oplus (0.145 \text{GeV})/\text{E}$$

Production well advanced 70 % of E-cal 15 % of H-cal modules completed





Heal module assembly



Heal optics assembly

### Preparation in progress for SPD-PS mass production



gluing of fibre in the groove of scintillators



#### h) Muon system



pad readout based on MWPC's.

### RPC aging test



Continuous increase of the plates resistivity resulting in a loss of the rate capability to <100 Hz/cm<sup>2</sup>.

Originally foreseen MWPC-RPC combination abandoned.



wire pitch measurement machine



production of panel



wiring machine

Production of MWPC will start soon.

#### i) Trigger

Level-0: Muon, Calorimeter (e, h,  $\gamma$ ,  $\pi^0$ ), Pile-up veto, Decision Unit

prototype work advancing.









#### Level-1

Currently data from VELO + TT + L0 Decision Unit Work on a dedicated Level-1 hardware implementation based on SCI technology completed.

However...

more flexibility in input data and CPU power needed: keep a possibility open to add

IT+OT+Muon+Calo in future

(robustness, evolving physics goal, etc.)

Unified Level-1/DAQ(High Level Trigger) architecture is now studied.



#### j) Computing

Online DAQ and Experimental Control System

Level-1 accept = 40 kHz

Readout all the detector information for the High Level Trigger processing.

HLT accept = 200 Hz

Record data to mass storage for offline processing.

Some prototypes are being built

Timing and Fast Control switch Readout Supervisor layout





with Interface to Experimental Control System

#### Offline software

```
event generation
particle tracking through the detector
detector response simulation
event reconstruction
physics analysis

for the Trigger and Reoptimization TDR's
```

#### Current activity:

Brunel → event reconstruction only and new package for the particle tracking and detector response based on GEANT 4 (Gauss)

#### Offline computing

Development of the LHCb computing model gaining experience from the large scale MC event generation ~1M events/day for the Trigger and Reoptimization TDR's using CERN + many other institutes + European Data Grid A total of >40M events generated:

30M Minimum Bias events+ specific B decay samples10M bb inclusive

trigger study

} physics performance study

→ data reduction is being made to cope with the amount

Production shared among 18 computing centres



~190 sec/B-event with 1 GHz Pentium VI 10<sup>5</sup> B-events/sec at LHC



## 4) Experimental Area



All the subsystem installation to be completed by Summer 2006, giving sufficient time for the global commissioning for the first beam in April 2007.

## 5) Summary

- Construction of the magnet, E-cal and H-cal modules is progressing as planned.
- Good progress on the detector reoptimization. A simpler tracking system with good physics performance. Trigger is becoming more robust and efficient.
- Construction of VELO vacuum tank, RICH-2, OT, SPD/PS and Muon chambers will start very soon.
- The LHCb collaboration expects to complete the detector commissioning by April 2007 to be ready for the first LHC beam.